Finite-difference solution of the Poisson-Boltzmann equation: Complete elimination of self-energy
نویسندگان
چکیده
A new procedure to solve the Poisson-Boltzmann equation is proposed and shown to be efficient. The electrostatic potential due to the reaction field is calculated directly. Self-interactions among the charges are completely eliminated. Therefore, the reference calculation to cancel out the self-energy is not needed. © 1996 by John Wiley & Sons, Inc.
منابع مشابه
Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملModeling of Transport through Submicron Semiconductor Structures: A Direct Solution of the Coupled Poisson-Boltzmann Equations
We report on a computational approach based on the self-consistent solution of the steady-state Boltzmann transport equation coupled with the Poisson equation for the study of inhomogeneous transport in deep submicron semiconductor structures. The nonlinear, coupled Poisson-Boltzmann system is solved numerically using finite difference and relaxation methods. We demonstrate our method by calcul...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملAdaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems
We apply the adaptive multilevel finite element techniques described in [20] to the nonlinear Poisson-Boltzmann equation (PBE) in the context of biomolecules. Fast and accurate numerical solution of the PBE in this setting is usually difficult to accomplish due to presence of discontinuous coefficients, delta functions, three spatial dimensions, unbounded domains, and rapid (exponential) nonlin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 17 11 شماره
صفحات -
تاریخ انتشار 1996